Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 353: 120202, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38308984

RESUMO

Surface water plays a crucial role in the ecological environment and societal development. Remote sensing detection serves as a significant approach to understand the temporal and spatial change in surface water series (SWS) and to directly construct long-term SWS. Limited by various factors such as cloud, cloud shadow, and problematic satellite sensor monitoring, the existent surface water mapping datasets might be short and incomplete due to losing raw information on certain dates. Improved algorithms are desired to increase the completeness and quality of SWS datasets. The present study proposes an automated framework to detect SWS, based on the Google Earth Engine and Landsat satellite imagery. This framework incorporates implementing a raw image filtering algorithm to increase available images, thereby expanding the completeness. It improves OTSU thresholding by replacing anomaly thresholds with the median value, thus enhancing the accuracy of SWS datasets. Gaps caused by Landsat7 ETM + SLC-off are respired with the random forest algorithm and morphological operations. The results show that this novel framework effectively expands the long-term series of SWS for three surface water bodies with distinct geomorphological patterns. The evaluation of confusion matrices suggests the good performance of extracting surface water, with the overall accuracy ranging from 0.96 to 0.97, and user's accuracy between 0.96 and 0.98, producer's accuracy ranging from 0.83 to 0.89, and Matthews correlation coefficient ranging from 0.87 to 0.9 for several spectral water indices (NDWI, MNDWI, ANNDWI, and AWEI). Compared with the Global Reservoirs Surface Area Dynamics (GRSAD) dataset, our constructed datasets promote greater completeness of SWS datasets by 27.01%-91.89% for the selected water bodies. The proposed framework for detecting SWS shows good potential in enlarging and completing long-term global-scale SWS datasets, capable of supporting assessments of surface-water-related environmental management and disaster prevention.


Assuntos
Monitoramento Ambiental , Água , Monitoramento Ambiental/métodos , Imagens de Satélites , Meio Ambiente , Algoritmos
2.
FASEB J ; 36(9): e22488, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35929441

RESUMO

DCBLD2 is a neuropilin-like transmembrane protein that is up-regulated during arterial remodeling in humans, rats, and mice. Activation of PDGFR-ß via PDGF triggers receptor phosphorylation and endocytosis. Subsequent activation of downstream signals leads to the stimulation of phenotypic conversion of VSMCs and arterial wall proliferation, which are common pathological changes in vascular remodeling diseases such as atherosclerosis, hypertension, and restenosis after angioplasty. In this study, we hypothesized that DCBLD2 regulates neointimal hyperplasia through the regulation of PDGFR-ß endocytosis of vascular smooth muscle cells (VSMCs) through Caveolin-1 (Cav-1). Compared with wild-type (WT) mice or control littermate mice, the germline or VSMC conditional deletion of the Dcbld2 gene resulted in a significant increase in the thickness of the tunica media in the carotid artery ligation. To elucidate the underlying molecular mechanisms, VSMCs were isolated from the aorta of WT or Dcbld2-/- mice and were stimulated with PDGF. Western blotting assays demonstrated that Dcbld2 deletion increased the PDGF signaling pathway. Biotin labeling test and membrane-cytosol separation test showed that after DCBLD2 was knocked down or knocked out, the level of PDGFR-ß on the cell membrane was significantly reduced, while the amount of PDGFR-ß in the cytoplasm increased. Co-immunoprecipitation experiments showed that after DCBLD2 gene knock-out, the binding of PDGFR-ß and Cav-1 in the cytoplasm significantly increased. Double immunofluorescence staining showed that PDGFR-ß accumulated Cav-1/lysosomes earlier than for control cells, which indicated that DCBLD2 gene knock-down or deletion accelerated the endocytosis of PDGF-induced PDGFR-ß in VSMCs. In order to confirm that DCBLD2 affects the relationship between Cav-1 and PDGFR-ß, proteins extracted from VSMCs cultured in vitro were derived from WT and Dcbld2-/- mice, whereas co-immunoprecipitation suggested that the combination of DCBLD2 and Cav-1 reduced the bond between Cav-1 and PDGFR-ß, and DCBLD2 knock-out was able to enhance the interaction between Cav-1 and PDGFR-ß. Therefore, the current results suggest that DCBLD2 may inhibit the caveolae-dependent endocytosis of PDGFR-ß by anchoring the receptor on the cell membrane. Based on its ability to regulate the activity of PDGFR-ß, DCBLD2 may be a novel therapeutic target for the treatment of cardiovascular diseases.


Assuntos
Caveolina 1 , Músculo Liso Vascular , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Proliferação de Células , Células Cultivadas , Endocitose , Humanos , Hiperplasia/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...